Plasticity in the PFC Following 5-7-9 Postnatal Alcohol Exposure Using Exercise as an Intervention

Ivy Hernandez Delgado, Psychology Research Mentor: Justin Rhodes

Abstract

Fetal alcohol spectrum disorder (FASD) is an umbrella term used to describe the wide range of deficits caused by exposure to alcohol in utero. Lack of restraint from conducting a behavior or a psychological process, is often impaired in these individuals (inhibition). One region that is attributed to this lack of inhibition is the medial prefrontal cortex. GABAergic parvalbumin interneurons (PV+) play a role in the inhibition surrounding neurons in the medial prefrontal cortex. Therefore, we hypothesize that alcohol exposed individuals will have less PV+ cells compared to their control counterparts. This study used C57/6J male adolescent mice. These subjects were divided into two groups, alcohol exposure (20% ethanol solution at 5 g/kg) or saline. Behavioral testing occurred between PD72-79. Subjects were tested on the Passive Avoidance task and Rotarod. On 85 PD mice were anesthetized, perfused using saline, and the brains processed using Parvalbumin antibody. Preliminary results show a decrease in PV+ cells in alcohol exposed subjects compared to control groups. Further, alcohol exposed subjects exhibited an increased latency to learn the passive avoidance task. Both the number of PV+ cells and the level of inhibitory control were decreased with prenatal alcohol exposure infer the differences in inhibition between the groups; can be seen by quantity of the PV+ cells in the medial prefrontal cortex. These results show the long term impact prenatal alcohol exposure have on the functioning and anatomy of the medial prefrontal cortex.